Purchasing power parity: a cointegration analysis of the Australian, New Zealand and Singaporean currencies

JOHN C.B. COOPER

Glasgow Caledonian University, City Campus, Cowcaddens Road, Glasgow G4 0BA, Scotland

Received 19 July 1994

This paper provides a brief overview of tests for stationarity and cointegration and applies them in an attempt to establish the validity of purchasing power parity theory for the Australian, New Zealand and Singaporean currencies using quarterly time series for the period 1973 to 1992.

I. INTRODUCTION

Purchasing power parity theory (PPP) has a long history but really came to the fore during discussions concerning appropriate exchange rates in which countries should rejoin the Gold Standard after the first World War. The theory still commands considerable respect in certain quarters and some financial institutions, such as the Swiss Bank Corporation (see Holzer, 1992), regard it as a useful guide to long-term currency movements.

In recent times, there has been an explosion of empirical research on the validity of PPP in the real world. As Rush and Husted (1985) have pointed out, these studies may be categorized according to whether:

(i) price and exchange rate levels (absolute PPP) or changes in prices and exchange rates (relative PPP) are studied;
(ii) individual commodity prices or national price levels are employed;
(iii) purely traded goods’ prices or non-traded as well as traded goods’ prices are considered;
(iv) a bilateral or multilateral approach is adopted;
(v) the short run or long run is investigated.

In general, such empirical work has tended to yield contradictory results depending upon:

(i) the particular currencies under consideration;
(ii) the price indices used to measure price levels or inflation;
(iii) the particular time period under investigation;
(iv) the method of analysis employed.

This present study seeks to make a modest contribution to this literature by presenting tests of cointegration between price levels and exchange rates along with tests for stationarity of real exchange rates for Australia, New Zealand and Singapore using quarterly data for the period from 1973 to 1992. Recent papers using this methodology include those by Baillie and Selover (1987), Corbae and Ouliaris (1988), McNown and Wallace (1989), Yoonbai Kim (1990) and Conejo and Shields (1993).

II. STATIONARITY, INTEGRATED SERIES AND COINTEGRATION: AN OVERVIEW

A stochastic process is said to be stationary if the means and variances of the process are constant over time while the autocovariance between two periods depends only on the gap between those periods and not the actual time at which the covariance is considered. If one or more of these three conditions are not met, the process is nonstationary. Intuitively, if a time series, defined as a single realization of a stochastic process, has a tendency to return to a fixed value over time, then it is stationary.

If a time series X_t has to be differenced d times in order to induce
stationarity, it is said to be integrated of order d, denoted $X_t \sim I(d)$. A series that requires no such differencing to obtain stationarity is $I(0)$. Thus, time series may be classified according to their order of integration. Roughly speaking, $I(2)$ series appear to be growing at an increasing rate, $I(1)$ series appear to grow at a constant rate while $I(0)$ series appear to be trendless.

If two time series Y_t and X_t are integrated of different order, say $I(2)$ and $I(1)$ respectively, then they must be drifting apart over time. Therefore a regression of Y_t on X_t would be illogical and, in any case, the error term produced, e_t, would also be $I(2)$ so violating the underlying assumptions of ordinary least squares (OLS). In other words, the linear combination $Y_t - a - bX_t = e_t$ is $I(2)$. In general, if two series are integrated of different orders, linear combinations of them are integrated to the higher of the two orders.

Similarly, if the two series Y_t and X_t are both $I(1)$, then Y_t is stationary. Thus a regression of one upon the other would produce spurious results. That is, because e_t is again $I(1)$, it still violates the assumptions of OLS. However, in some instances, a linear combination of two $I(1)$ variables will result in a variable which is $I(0)$ and, in such cases, the two series are said to be cointegrated. Now a regression of Y_t on X_t is permissible since the error term e_t is $I(0)$ or stationary, so satisfying the assumptions of OLS.

If Y_t and X_t are cointegrated, they must move together in the long run and the single regression equation $Y_t = a + bX_t + e_t$ will represent the cointegrating relationship between Y_t and X_t provided the error term e_t contains no long-run or trend components. At least one of the variables in the cointegrating relationship must move in the short run so as to maintain the long-run relationship. If not, deviations from the long-run relationship would never be corrected and the relationship could not hold in the long run. If, at any time, Y_t exceeds $a + bX_t$ then eventually Y_t must fall or X_t must rise or both to maintain the long-run relationship. Therefore, a necessary condition for a long-run equilibrium relationship between Y_t and X_t is that they are cointegrated.

III. TESTING FOR STATIONARITY: DICKEY FULLER (DF) AND AUGMENTED DICKEY FULLER (ADF) TESTS

Consider the following model:

$$Y_t = a + bt = cY_{t-1} + e_t$$ \hspace{1cm} (1)

where $e_t \sim N(0, \sigma^2)$ so that $e_t \sim I(0)$

It can be shown by repeated substitutions that if $c = 1$ then, although e_t has constant variance, the variance of Y_t tends to infinity as time t increases. Thus Y_t is nonstationary and is described as a time series with stochastic trend. Furthermore Y_t is an integrated series in the sense that the random shocks e_t accumulate, add up or integrate over time so that every shock affects all later values of Y_t and the process has an infinite memory. Similarly, if $b \neq 0$ then Y_t is itself a specific function of time t and is said to have a deterministic trend. In both cases, because Y_t is nonstationary, standard t tests for an OLS regression are rendered invalid. Therefore to obviate this problem, Equation 1 is reparameterized to first difference form by subtracting Y_{t-1} from both sides to produce,

$$\Delta Y_t = a + bt + (c-1)Y_{t-1} + e_t$$ \hspace{1cm} (2)

This is known as the Dickey–Fuller regression OLS estimation which provides the basis for a set of three tests.

Test 1
$H_0 : c-1 = 0$ or $c = 1$

The null hypothesis here is that Y_t is $I(1)$ and is rejected if the t statistic on $c-1$ has a larger negative value than the critical value for t in Fuller (1976, p. 373). This test, the so-called ‘unit root test’, is however not sufficient to establish stationarity for, if b is nonzero, the first difference ΔY_t will be time dependent and so Y_t cannot be $I(0)$.

Test 2
$H_0 : c-1 = 0$ or $c = 1$ and $b = 0$

The null hypothesis here is that the Y_t has a stochastic trend but no deterministic trend and can be tested using the standard F test. The estimated value of F is compared with the critical value of Φ_3 in Dickey and Fuller (1981, p. 1063). If F is less than Φ_3 we cannot reject the null hypothesis and so conclude that Y_t is a random walk. However, ΔY_t is stationary implying that $Y_t \sim I(1)$.

Test 3
$H_0 : c-1 = 0$ or $c = 1$ and $b = 0$ and $a = 0$

The null hypothesis here is that Y_t has a stochastic trend, no deterministic trend and no drift. If the estimated value of F is less than the critical value of Φ_3 in Dickey and Fuller (1981, p. 1063), we may conclude that Y_t is a random walk with no drift. In other words Y_t is still $I(1)$.

To protect against the possibility that Y_t follows a higher order autoregressive process, lagged values of the dependent variable may be added to the right hand side of Equation 2 to produce,

$$\Delta Y_t = a + bt + (c-1)Y_{t-1} + \sum_{i=1}^{n} d_i \Delta Y_{t-i} + e_t$$ \hspace{1cm} (3)

where n is selected to ensure white noise residuals in the regression. This is known as the augmented Dickey–Fuller regression and the three tests outlined above are conducted in precisely the same way.

IV. TESTING FOR COINTEGRATION: THE ENGLE–GRANGER TWO STAGE PROCEDURE

If we have an economic model involving two time series Y_t and X_t and if the DF or ADF tests indicate that both are $I(1)$ then, usually, the linear combination $Y_t - a - bX_t = e_t$ will also be $I(1)$.
However, if we find that e_t is stationary, i.e. $I(0)$, then Y_t and X_t are cointegrated. Therefore we may test for cointegration in two steps:

(i) Estimate the so-called cointegrating regression

$$Y_t + a + bX_t + e_t$$

by OLS and collect the residuals \hat{e}_t.

(ii) Test whether \hat{e}_t are stationary by forming the equation

$$\hat{e}_t = \rho \hat{e}_{t-1} + v_t \quad v_t \sim N(0, \sigma^2)$$

and reparameterize to

$$\Delta \hat{e}_t = (\rho - 1) \hat{e}_{t-1} + v_t$$

The null hypothesis $H_0: \rho - 1 = 0$ or $\rho = 1$ may be tested by comparing the calculated t values against critical values in Engle and Yoo (1987, p. 157). Again, an augmented version is available to cope with higher order autoregression.

V. PURCHASING POWER PARITY AND COINTEGRATION

Purchasing power parity (PPP) postulates that the exchange rate between two currencies is ultimately determined by the domestic purchasing power of the currencies concerned. In particular, the absolute version of PPP states that, after allowing for transactions costs and in the absence of barriers to trade, the price of a homogeneous basket of commodities in one currency will equal its price in another currency when translated at the current exchange rate. Were this not so, trader arbitrageurs would purchase goods in the cheaper market and sell in the dearer as long as the price differential exceeded transactions costs. Therefore the absolute version of PPP postulates the long-run equilibrium relationship:

$$D_t = S_t F_t$$ \hspace{1cm} (4)$$

or

$$S_t = (D/F)_t$$ \hspace{1cm} (5)$$

where S_t is the nominal exchange rate, D_t is the domestic price level and F_t is the foreign price level.

For such a long run equilibrium relationship to exist, the two variables S_t and $(D/F)_t$ must be cointegrated.

To test for this cointegration, quarterly data for the period 1973–92 on the bilateral exchange rate and the price ratio for Australia, New Zealand and Singapore vis-à-vis the USA were obtained from International Financial Statistics of the IMF. The price index used was the Consumer Price Index. The test procedure applied was conducted in two stages.

First, the hypothesis that the nominal exchange rate and the ratio of price indices are nonstationary was examined using the three tests outlined in Section III. The results are presented in Table 1. For all three countries, these test results indicate quite clearly that the variables are nonstationary. The DF test and the ADF test, using up to two lags to ensure autocorrelation free residuals, were reapplied to the first differences of each variable (indicated by the symbol Δ) and this time, stationarity was indicated in every instance. It was therefore concluded that all exchange rates and price ratios are nonstationary and $I(1)$.

Secondly, cointegrating regressions of the form:

$$\log S_t = a + b \log (D/F)_t + e_t$$

were estimated for all three countries and the residuals tested for

Table 1. Tests for unit roots in nominal exchange rate and price ratios

<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>DF</th>
<th>ADF(1)</th>
<th>ADF(2)</th>
<th>Φ_3</th>
<th>Φ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>S_t</td>
<td>-1.9660</td>
<td>-1.7937</td>
<td>-1.8466</td>
<td>1.8541</td>
<td>2.5243</td>
</tr>
<tr>
<td></td>
<td>$(D/F)_t$</td>
<td>-1.3761</td>
<td>-1.6507</td>
<td>-1.9652</td>
<td>2.8839</td>
<td>4.6285</td>
</tr>
<tr>
<td></td>
<td>ΔS_t</td>
<td>-9.6280</td>
<td>-7.0882</td>
<td>-4.9521</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>$\Delta(D/F)_t$</td>
<td>-6.8976</td>
<td>-4.2689</td>
<td>-3.8480</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>New Zealand</td>
<td>S_t</td>
<td>-1.6133</td>
<td>-1.6736</td>
<td>-2.0650</td>
<td>1.7934</td>
<td>2.2848</td>
</tr>
<tr>
<td></td>
<td>$(D/F)_t$</td>
<td>+1.3280</td>
<td>-0.5889</td>
<td>-1.2022</td>
<td>1.7906</td>
<td>3.3106</td>
</tr>
<tr>
<td></td>
<td>ΔS_t</td>
<td>-8.6166</td>
<td>-7.0537</td>
<td>-4.6413</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>$\Delta(D/F)_t$</td>
<td>-4.5228</td>
<td>-3.4160</td>
<td>-3.6343</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Singapore</td>
<td>S_t</td>
<td>-2.4322</td>
<td>-2.4448</td>
<td>-1.6872</td>
<td>3.4505</td>
<td>3.0570</td>
</tr>
<tr>
<td></td>
<td>$(D/F)_t$</td>
<td>-2.5783</td>
<td>-2.6559</td>
<td>-2.4861</td>
<td>3.5381</td>
<td>3.3470</td>
</tr>
<tr>
<td></td>
<td>ΔS_t</td>
<td>-9.4043</td>
<td>-8.6391</td>
<td>-6.3127</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>$\Delta(D/F)_t$</td>
<td>-6.0888</td>
<td>-5.5913</td>
<td>-6.0490</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Critical values (0.05)

| (a) Levels | -3.4666 | -3.4673 | -3.4681 | 6.49 to 6.73 | 4.88 to 5.13 |
| (b) First differences | -3.4673 | -3.4681 | -3.4688 | – | – |

1 The interested reader will find a full, yet readily accessible, account of cointegration analysis in Charemza and Deadman (1992).
stationarity using the DF and ADF procedures. The results are shown in Table 2. In no case is stationarity of the residuals apparent so that cointegration of nominal exchange rates and price ratios cannot be accepted. These results therefore do not lend weight to PPP for the currencies and time period studied.²

VI. THE REAL EXCHANGE RATE

The real exchange rate, R_t, is a measure of a country’s competitiveness vis-à-vis another country and may be expressed as:

$$R_t = S_t F/D_t$$ (6)

If foreign prices F_t rise above domestic prices D_t and this is not offset by a depreciation of the foreign currency S_t, then there is a real appreciation of the foreign currency and the foreign country concerned becomes relatively uncompetitive.

If PPP holds so that $S_t = (D_t/F_t)$, then, in principle, the value of R_t ought to be unity. Alternatively, taking logs of both sides of Equation 6,

$$\log R_t = S_t + \log F_t - \log D_t$$ (7)

and, if $R_t = 1$ then $\log R_t = 0$

At any point in time, of course, it is unlikely that $\log R_t$ will be exactly equal to zero but short run deviations from PPP imply that $\log R_t$ should be a zero mean stationary process, i.e. I(0). Therefore if $\log R_t$ is I(1), there is a tendency for the nominal exchange rate and the price ratio to drift apart.

Accordingly, the real exchange rates for Australia, New Zealand and Singapore were converted to logarithms as per Equation 7 and tested for unit roots using the DF and ADF tests described previously. The results shown in Table 3 indicate nonstationarity for all three countries and this is entirely consistent with the cointegration tests.

VII. CONCLUSION

In this paper, evidence that PPP does not hold in the long run for the Australian, New Zealand and Singaporean currencies has been presented. Cointegration tests did not support the existence of a long run equilibrium relation between the consumer price ratio and nominal exchange rate vis-à-vis the US dollar for any of the three countries. Similarly, real exchange rates for all three countries were found to be nonstationary processes.

Why is PPP such a poor tool for explaining exchange rate movements? It ignores capital flows. In recent years, in particular, capital has been free to move from country to country. Cross border trade in financial assets swamps foreign exchange transactions in goods and services. It is estimated that almost US$100 trillion equivalent is traded annually on foreign exchange markets and that it is twenty times the value of world trade in goods.

REFERENCES

Table 2. Cointegrating regressions: nominal exchange rates on price ratios

<table>
<thead>
<tr>
<th>Country</th>
<th>a</th>
<th>b</th>
<th>R_2</th>
<th>DF</th>
<th>ADF(1)</th>
<th>ADF(2)</th>
<th>ADF(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>0.2249</td>
<td>1.5064</td>
<td>0.80</td>
<td>−1.97</td>
<td>−1.78</td>
<td>−1.61</td>
<td>−1.88</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.1576</td>
<td>0.9788</td>
<td>0.81</td>
<td>−1.87</td>
<td>−1.93</td>
<td>−2.14</td>
<td>−2.53</td>
</tr>
<tr>
<td>Singapore</td>
<td>0.9052</td>
<td>0.5554</td>
<td>0.72</td>
<td>−1.90</td>
<td>−1.63</td>
<td>−0.73</td>
<td>−0.77</td>
</tr>
<tr>
<td>Critical values (0.05)</td>
<td>−3.41</td>
<td>−3.42</td>
<td>−3.42</td>
<td>−3.42</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Tests for unit roots in real exchange rates

<table>
<thead>
<tr>
<th>Country</th>
<th>DF</th>
<th>ADF(1)</th>
<th>ADF(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>−1.9675</td>
<td>−1.7769</td>
<td>−1.6111</td>
</tr>
<tr>
<td>New Zealand</td>
<td>−1.8453</td>
<td>−1.9019</td>
<td>−2.1113</td>
</tr>
<tr>
<td>Singapore</td>
<td>−2.0136</td>
<td>−1.6513</td>
<td>−0.7314</td>
</tr>
<tr>
<td>Critical values (0.05)</td>
<td>−3.4666</td>
<td>−3.4673</td>
<td>−3.4681</td>
</tr>
</tbody>
</table>

2 Using precisely the same data set, the bilateral exchange rate and price ratio for New Zealand vis-à-vis Australia was subjected to precisely the same procedures reported above. Once again no evidence of cointegration was detected.

